Numerical solutions of a perturbed Chandrasekhar H-equation
نویسندگان
چکیده
منابع مشابه
Numerical Solutions to Fractional Perturbed Volterra Equations
and Applied Analysis 3 where Θ is a weight function, is called the scalar product of functions f, g on the interval 0, t . Let us recall that two functions are orthonormal when ∀i,j 〈 φi t , φj t 〉 δij , 2.2 where δij is the Kronecker delta. We are looking for an approximate solution to 1.1 as an element of the subspaceHnφ , spanned on nφ first basic functions {φj : j 1, 2, . . . , nφ} unφ x, t...
متن کاملNumerical solution of a singularly perturbed Volterra integro-differential equation
*Correspondence: [email protected] Department of Mathematics, Faculty of Sciences, Yuzuncu Yil University, Van, 65080, Turkey Abstract We study the convergence properties of a difference scheme for singularly perturbed Volterra integro-differential equations on a graded mesh. We show that the scheme is first-order convergent in the discrete maximum norm, independently of the perturbation parame...
متن کاملPeriodic solutions of a singularly perturbed delay differential equation
A singularly perturbed differential delay equation of the form ẋ(t) = −x(t)+ f (x(t − 1), λ) (1) exhibits slowly oscillating periodic solutions (SOPS) near the first period-doubling bifurcation point of the underlying map (obtained by setting = 0). For extremely small values of , these periodic solutions resemble square waves, which consist of sharp, O( ) transition layers connecting intervals ...
متن کاملTowards soliton solutions of a perturbed sine-Gordon equation
We give arguments for the existence of exact travelling-wave (in particular solitonic) solutions of a perturbed sine-Gordon equation on the real line or on the circle, and classify them. The perturbation of the equation consists of a constant forcing term and a linear dissipative term. Such solutions are allowed exactly by the energy balance of these terms, and can be observed experimentally e....
متن کاملExistence of Solutions of an Integral Equation of Chandrasekhar Type in the Theory of Radiative Transfer
We give an existence theorem for some functional-integral equations which includes many key integral and functional equations that arise in nonlinear analysis and its applications. In particular, we extend the class of characteristic functions appearing in Chandrasekhar’s classical integral equation from astrophysics and retain existence of its solutions. Extensive use is made of measures of no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1982
ISSN: 0022-247X
DOI: 10.1016/0022-247x(82)90018-x